

FEBRUARY 15, 2019 | DRAFT
TECHNICAL MEMO \#4
(ALTERNATIVES DEVELOPMENT AND EVALUATION)

Mn 220 N

 Corridor StudyPrepared for:

1. Introduction

This memo is the fourth in a series of technical memos for the Mn 220 N (Mn 220) Corridor Study project.

2. Existing and Future Conditions

Refer to Technical Memorandum 1 for documentation of the existing and future conditions assessment.

3. Roadway Safety and Traffic Operation Analysis

Refer to Technical Memorandum 2 for documentation of the roadway safety and traffic operation characteristics.

4. Purpose and Need

Refer to Technical Memorandum 3 for documentation of the corridor study purpose and needs.

5. Alternatives Analysis and Evaluation

The alternatives development identifies transportation ideas and concepts based upon input from stakeholders and a review of the purpose and needs. From this range of alternatives, a screening evaluation is completed to evaluate each idea against key objectives. This process identifies the alternatives that best meet the project goals and are carried forward for further evaluation. The goal is to arrive at the alternative that best balance and meet the primary objectives of the stakeholders and community.
Table 5- 1. Alternatives Analysis Process

5.1 Alternative Identification and Evaluation Considerations

To address identified deficiencies and the purpose and needs for the Mn 220 corridor numerous improvement alternatives were identified to address four primary objectives of the study:

- Improve access control
- Improve safety
- Improve mobility/capacity; and
- Improve pedestrian crossings of Mn 220

The evaluation of the identified alternatives consists of a layered approach that includes:

- Assessing and comparing high level considerations such as key pros/cons, trade-offs and design considerations or fatal flaws;
- Technical analysis of intersection capacity, safety benefits, right of way needs, construction costs and economic viability as applicable (benefit/cost ratio); and
- Qualitative evaluation scoring of key metrics identified in the planning process that are consistent with the Purpose and Need statement and 2045 Metropolitan Transportation Plan (MTP) objectives and performance goals.
The ultimate selection of the preferred alternative(s) or maintaining the no build is the alternative that best meets the corridor objectives; including the combination of assessment of all the considerations, technical analysis, comparison evaluation metrics and public/stakeholder engagement.

5.2 Access / Traffic Control Device Considerations

Three primary forms of traffic control were evaluated at each of the key intersections: throughstop control with access management or geometric improvements, traffic signal, and roundabout. The following sub-sections provide the high-level pros and cons of the preliminary access/traffic control alternatives, as well as an outline of the any necessary capacity/warrant analysis procedures.

5.2.1 Access Management

Access management in most cases would consist of limiting a full-access intersection to a threequarter access intersection with stop signs on the cross-street. Prohibiting cross-street through and left-turning movements would improve safety by decreasing the number of conflict points and potential for right angle crashes. Intersection operations would be expected to improve as well. The Mn 220 corridor intersections ($15^{\text {th }}$ Street NE and $20^{\text {th }}$ Street NW) are good candidates for access management modifications due to the presence of frontage roads and a well-connected supporting street system. Motorists attempting to cross or turn left onto Mn 220 could re-route to a nearby full-access intersection via the closest frontage road. $3 / 4$ access configuration at these two locations are being considered for two primary reasons:

- There may be advantage with this design to improving pedestrian crossing treatments and reducing exposure for pedestrians (i.e. improved refuge median design).
- Restricting eastbound/westbound left turn and through movements relocates these motorists to $23^{\text {rd }}$ Street and $17^{\text {th }}$ Street the primary east/west through streets, thereby helping support justification for improved access control at those locations.

5.2.2 Traffic Signal

The two existing traffic signal systems ($14^{\text {th }}$ Street NW and US 2) are nearing the end of their useful life and will require replacement. The traffic signal control alternative considers either the full replacement of existing traffic signals, upgraded to present day standards, or the installation
of a new signal system at currently stop controlled intersections. Installation of a traffic signal where one is not present may reduce overall crash frequency but may bear an increase in specific crash types such as rear-end and right angle. The benefit or impact of traffic signal installation takes into consideration the change in motor vehicle delays and change in safety performance derived from anticipated changes in crash characteristics. In some cases, the installation of a traffic signal system may provide improved peak hour traffic operation but could result in extra traffic delay during off peak periods. The true cost of a signal system involves a minimum of initial construction, Americans with Disability Act (ADA) pedestrian ramp improvements, ongoing maintenance, and electricity.
The intersections of Mn 220/US 2, $14^{\text {th }}$ Street NW, $17^{\text {th }}$ Street NW and $23^{\text {rd }}$ Street NW are the four locations a traffic signal system may be a feasible alternative. The existing traffic signal systems at $14^{\text {th }}$ Street NW and US 2 are warranted installations. For each intersection where a new traffic signal installation is considered ($17^{\text {th }}$ Street NW and $23^{\text {rd }}$ Street NW), a warrant analysis was completed under existing 2018 volume and forecasted years 2030 and 2045 volumes. In addition, a warrant analysis was completed considering the potential for $3 / 4$ access configuration at $20^{\text {th }}$ Street NW and $15^{\text {th }}$ Street NE, where left turn and through motorists would be re-routed to these intersections. The warrant analysis was conducted in accordance with the Minnesota Manual on Uniform Traffic Control Devices (MnMUTCD) ${ }^{1}$ and is summarized in Table 5-2.

Table 5- 2. Traffic Signal Warrant Analysis Summary
TH 220 and 17th Street

Scenario	Warrant 1 - Eight Hour Vehicle Volume				Warrant 2 - Four Hour Volume		Warrant 3 - Peak Hour Volume	
	$\begin{gathered} \text { 1A } \\ \text { (Hours) } \end{gathered}$	$\begin{gathered} \text { 1B } \\ \text { (Hours) } \end{gathered}$	$\begin{aligned} & \text { 1A\&B } \\ & \text { (Hours) } \end{aligned}$	Warrant Met / Not Met	Hours	Warrant Met / Not Met	$\begin{gathered} \text { 3B } \\ \text { (Hours) } \end{gathered}$	Warrant Met/ Not Met
Year 2018 Existing (Full Access)	0 Hour	0 Hour	0 Hour	Not Met	0 Hour	Not Met	0 Hour	Not Met
Year 2018 Existing (3/4 Access at Adjacent Intersections)	0 Hour	0 Hour	1 Hour	Not Met	0 Hour	Not Met	0 Hour	Not Met
Year 2030 Existing (Full Access)	0 Hour	0 Hour	0 Hour	Not Met	0 Hour	Not Met	0 Hour	Not Met
Year 2030 Existing (3/4 Access at Adjacent Intersections)	1 Hour	7 Hours	4 Hours	Not Met	2 Hour	Not Met	0 Hour	Not Met
Year 2045 Existing (Full Access)	0 Hour	0 Hour	0 Hour	Not Met	0 Hour	Not Met	0 Hour	Not Met
Year 2045 Existing (3/4 Access at Adjacent Intersections)	4 Hours	10 Hours	7 Hours	Met (1B)	6 Hours	Met	2 Hour	Met

Source: 2011 Minnesota Manual on Uniform Traffic Control Devices
Note: Warrant 2 (Four Hour Volume) expected to be met in year 2033 and Warrant 1B (Eght Hour Volume) is expected to be met in year 2038 with $3 / 4$ access configuration at 20th Street

[^0]TH 220 and 23rd Street

$\left.$| Scenario |
| :--- |
| Year 2018 Existing (Full Access) |
| Year 2018 Existing (3/4 Access |
| at Adjacent Intersections) |$\left|\begin{array}{l|}\hline \text { Year } 2030 \text { Existing (Full Access) }\end{array}\right|$| Year 2030 Existing (3/4 Access |
| :--- |
| at Adjacent Intersections) | \right\rvert\, | Year 2045 Existing (Full Access) |
| :--- |
| Year 2045 Existing (3/4 Access
 at Adjacent Intersections) |

Warrant 1 - Eight Hour Vehicle Volume			
$\begin{gathered} 1 \mathrm{~A} \\ (\text { Hours) } \end{gathered}$	$\begin{gathered} \text { 1B } \\ \text { (Hours) } \end{gathered}$	1A\&B (Hours)	Warrant Met / Not Met
0 Hour	0 Hour	2 Hours	Not Met
0 Hour	0 Hour	2 Hours	Not Met
5 Hours	3 Hours	6 Hours	Not Met
6 Hours	2 Hours	5 Hours	Not met
8 Hours	9 Hours	11 Hours	$\begin{gathered} \text { Met } \\ (1 \mathrm{~A}, \mathrm{~B}, \mathrm{C}) \end{gathered}$
11 Hours	9 Hours	11 Hours	$\begin{gathered} \text { Met } \\ (1 \mathrm{~A}, \mathrm{~B}, \mathrm{C}) \end{gathered}$

Warrant 2 - Four Hour Volume		Warrant 3 - Peak Hour Volume	
Hours	Warrant Met / Not Met	$\begin{gathered} \text { 3B } \\ \text { (Hours) } \end{gathered}$	Warrant Met / Not Met
0 Hour	Not Met	0 Hour	Not Met
0 Hour	Not Met	0 Hour	Not Met
2 Hours	Not Met	0 Hour	Not Met
3 Hours	Not Met	0 Hours	Not Met
10 Hours	Met	4 Hours	Met
10 Hours	Met	4 Hours	Met

Source: 2011 Minnesota Manual on Uniform Traffic Control Devices
The warrant analysis indicates that a traffic signal at Mn 220/17 ${ }^{\text {th }}$ Street NW does not meet warrants until year 2033 (Warrant 2) and year 2038 (Warrant 1) assuming the added left turn and through traffic using $17^{\text {th }}$ Street as the result of the proposed $3 / 4$ access configurations at $20^{\text {th }}$ Street NW and $15^{\text {th }}$ Street. Without the proposed $3 / 4$ access configurations, a signal system is not expected to meet warrants at $17^{\text {th }}$ Street NW. At $23^{\text {rd }}$ Street, traffic signal warrants are also not satisfied until year 2045, regardless of access configuration at $20^{\text {th }}$ Street.

5.2.3 Roundabout

A roundabout would require full intersection reconstruction with a higher initial construction cost. Right of way acquisition may be necessary and may impact existing frontage roads. Overall, a roundabout is expected to provide high intersection safety performance (minimizes the potential for severe crashes) and with optimal lane configurations provides efficient traffic operations with low motorist delay during all time periods of the day.
For each intersection where a roundabout was considered, a planning-level roundabout capacity analysis was completed under forecasted year 2045 traffic volumes. The analysis was conducted in accordance with the Highway Capacity Manual (HCM) ${ }^{2}$. The purpose of the analysis was to determine whether a roundabout (multilane or single-lane) would be a suitable alternative for the intersection. The analysis indicated that a multilane roundabout is needed at US 2 and $14^{\text {th }}$ Street NW, whereas a single lane roundabout is expected to provide sufficient capacity at $17^{\text {th }}$ Street NW and $23^{\text {rd }}$ Street NW. An example planning level roundabout capacity analysis is shown in Table 5-3.

[^1]Table 5- 3. Planning Level Roundabout Capacity

Note: Mn 220 at $17^{\text {th }}$ Street - Forecast Year 2045

5.3 Pedestrian Improvement Strategies

To improve pedestrian crossing safety, comfort, and environment, the strategies could range from establishing connections and improving accessibility, improving visibility, reducing exposure, enhancing awareness or providing protection. The implementation of such strategies is dependent upon intersection characteristics but are typically considered in the hierarchy of least restrictive measures first to the most restrictive measures only when warranted. Although there are many treatments that fit into each strategy category, Table 5-4 illustrates and discusses a few treatments that might be most beneficial to Mn 220. As appropriate, pedestrian crossing treatments are included as part of the intersection improvement alternatives analysis. Truck and agricultural equipment are additional considerations that need to be made in determining the most appropriate improvements by location.

Alternatives Development and Evaluation

Table 5- 4. Pedestrian Improvement Strategies

ADA Ramps			
	Description	Benefits	Considerations
	When expanding/improving a pedestrian network, eliminating gaps in connectivity is recommended. If a sidewalk is added, a curb ramp will help provide an accessible route that people with disabilities can use to safely transition from a roadway to a curbed sidewalk and vice versa.	1. Will establish a connection for pedestrians between streets, schools, regional trails, and parks. 2. Improving pedestrian access to transit routes will improve a multimodal transportation environment.	1. There are currently 33 pedestrian ramps that are not compliant with ADA design standards. 2. It is often difficult or impossible for a person using a wheelchair, scooter, walker, or other mobility device to cross a street if the sidewalk on either side of the street ends without a curb ramp. If curb ramps are not provided, these individuals are forced to make a difficult choice. 3. Gaps in connectivity can be unsafe and reduce access for the elderly and disabled. 4. Follow Americans with Disabilities Act (ADA) design guidelines. 5. Texture patterns must be detectable to visually

Description
A marked crosswalk is a type of
pavement marking that indicates to pedestrians the recommended location to cross the roadway and also alerts approaching motorists as to where pedestrians may be crossing the street.

Benefits

Providing highly visible crosswalk locations can serve to bring greater attention to the motorist to expect pedestrian activity.

Considerations

Pavement marking material type is important
Design style (i.e., parallel bar, zebra, or other).
3. Note that at uncontrolled intersections without related enhancements, marked crosswalks are unlikely to statistically increase pedestrian safety, however a wareness is improved.
4. Frequent maintenance required due to damage caused by snow plows.

Technical Memorandum \#4

Alternatives Development and Evaluation

5.4 Alternatives Development

To address identified deficiencies and the purpose and needs for the Mn 220 corridor numerous improvement alternatives were identified for several key intersections and for key corridor segments. Figure 5-1 illustrates the alternatives developed. Key categories include; sidewalk construction, pedestrian crossing, intersection improvements and control devices, and segment design alternatives. The improvement alternatives were identified to address four primary objectives of the study:

- Improve access control
- Improve safety
- Improve mobility/capacity; and
- Improve pedestrian crossings of Mn 220

For most intersection alternatives a technical analysis is completed to document the high-level design considerations, key pros/cons and trade-offs, mobility (LOS), estimated construction cost, safety (crash and severity rate) and economic viability (benefit/cost ratio). Further explanation of the benefit/cost analysis is provided in the following section.

5.4.1 Benefit / Cost Analysis

An economic benefit/cost analysis was completed in accordance with the MnDOT Office of Investment Management, Benefit/Cost Analysis for Transportation Projects procedures, and assumes a 20-year analysis period. The monetary benefit of the project is quantified in terms of reduced (or increased) vehicle hours traveled (VHT) or less delay (or added delay) at the intersection and the reduced number and/or severity of estimated crashes over the analysis period between the no build conditions and the proposed alternatives. The estimated 20 -year monetary cost includes construction costs, expected operational and maintenance cost over this period (e.g., lighting, street signs), and contingency. Remaining capital values of the infrastructure features at the end of the 20-year analysis period are subtracted from the total cost of the alternative. The highest benefit/cost ratio represents the most economical solution. Benefit/cost ratios less than 1.0 might be considered less economically viable or be given less priority.

Estimated Safety Benefit

A safety analysis was completed for each alternative to help understand the anticipated level of improvement. The safety analysis includes investigating the change in crash types and computing a monetary annual crash cost for each preliminary alternative. Anticipated future roundabout crashes were estimated utilizing A Study of the Traffic Safety at Single-Lane Roundabouts in Minnesota ${ }^{3}$ The study revealed significant reductions in severe crashes upon conversion of traditional intersections to roundabout control. Anticipated future traffic signal crashes were estimated utilizing the crash rates from the MnDOT Intersection Green Sheets ${ }^{4}$. The A 20-year, present value adjusted safety benefit is computed using the MnDOT fiscal year 2019 crash values listed below:

[^2]- Property Damage Only: $\$ 7,200$
- Injury Type C: $\$ 87,000$
- Injury Type B: $\$ 180,000$
- Injury Type A: $\$ 600,000$
- Fatal: \$1,200,000 (two times Injury Type A).

Estimated Traffic Operation Benefit

The estimated traffic operation benefit is based on the total intersection vehicle delay for each intersection extrapolated over a 24 -hour day compared to the no-build (either an increase or decrease in total VHT). The total vehicle delay, measured in hours, is converted to 20-year present worth monetary value based on MnDOT fiscal year 2019 value of time (\$ per hour) for automobiles and trucks.

Estimated Construction Costs

Estimated construction costs are developed for key intersection alternatives. It should be noted that the cost estimates included a 30 percent contingency to account for risk or any unknowns that may not be identified without more detailed engineering. The cost estimates are also based on a high-level concept, without supporting base mapping engineering detail to accurately account for actual construction limits, grading, drainage or other design considerations. Therefore, are used for purpose of relative comparison within the study.

The following sub-sections discuss and evaluate the alternatives for each intersection and corridor segment.

5.4.2 Mn 220 at $23^{\text {rd }}$ Street NW

The following alternatives were developed and evaluated:

- No build
- Alternative A: Install Traffic Signal System
- Alternative B: Install Single Lane Roundabout

The intersection improvement options, design considerations, pros and cons, and estimated cost for each alternative are summarized in Table 5-6. Concept sketches are provided for reference in Appendix A.

Traffic Operation Analysis

Results of the traffic operation analysis are detailed in Table 5-5. Although acceptable traffic operation is expected, the traffic operation analysis found that a traffic signal is expected to increase the overall intersection delay and would provide less efficient intersection operation during off-peak periods. The roundabout alternative, however, is expected to provide a continuous flow of traffic and improve efficiency - it would provide the most overall efficient 24-hour operation.

Table 5- 5. Intersection Delay and LOS Summary - Mn 220 at $\mathbf{2 3}^{\text {rd }}$ Street NW

	Alternatives	AM Peak Hour		PM Peak Hour	
Year	Scenario	LOS	Delay (s)	LOS	Delay (s)
$\begin{aligned} & \infty \\ & \underset{\sim}{7} \\ & \text { N} \\ & \vdots \\ & \end{aligned}$	No Build	A / A	2.6 / 5.6	A / A	2.6 / 6.7
	ALT A	A / A	7.2 / 9.6	A / B	8.7 / 11.8
	ALT B	A / A	1.4 / 1.9	A / A	1.6 / 2.0
	No Build	A / C	5.8 / 15.0	A / C	7.0 / 22.8
	ALT A	B / B	13.1 / 18.5	B / B	13.0 / 18.8
	ALT B	A / A	3.6 / 4.8	A / A	3.8 / 4.7

Overall Intersection LOS / Worst Approach LOS
Overall Intersection Delay / Worst Movement Delay

Safety Analysis

Table 5-7 summarizes the estimated change in intersection crash performance. Alternative A is expected to increase the overall intersection crash rate, and potentially increase crash severity. Alternative B is expected to reduce the overall intersection crash rate and crash severity.

Table 5- 6. Intersection Safety Summary - Mn 220 at $\mathbf{2 3}^{\text {rd }}$ Street NW

	No Build	Alternative A Signal Installation	Alternative B Single-lane Roundabout
Observed/Estimated Crash Rate (Crashes/MEV)	0.54	0.59	0.32
Observed/Estimated Injury Crashes (Percent of Total Crashes)	33.3%	37.7%	24.7%
Observed/Estimated Crash Severity Rate (Crashes/MEV)	0.80	0.89	0.42
2045 Estimated Crash Cost (2018 Dollars)* * Crash cost is in dollar unit based on MnDOT OIM Fiscal Year 2019 Values	$\$ 56,250$		

Technical Memorandum \#4

Alternatives Development and Evaluation

Table 5- 7. Alternatives Comparison Matrix - Mn 220 at $\mathbf{2 3}^{\text {rd }}$ Street NW Alternative A: Install Traffic Signal System

- Install FYA on all approaches
- During AM and PM peak periods, operate westbound, northbound and southbound
- Outside of peak periods, both eastbound/westbound operate permissive
- Provide pedestrian crossing countd
- Crosswalks and intersection lighting
-Install lave eastbound/ws (bound lane designation
and pavement markings ($1-\mathrm{TH} / \mathrm{LT}, 1-\mathrm{RT}$)

Pros and Cons
Comparison Summary
. Can be designed with minor impact to street width and curbs 2. Improves left turn access onto Mn 220
3. FYA can improve motorist safety and flexibility for intersection operation, including FYA omit funcationality with pedestrian actuation
4. Familiarity 4. Familiarity

H20 north of 23 rd Street NW
6. Compatible with current 2045 MTP

Cons

1. Ongoing operation, maintenance, and electricity costs
2. Ongoing operation, maint unal 20, and
3. Signal warrants not met until
4. Expected to increase the overall intersection delay and increase the 3. Expected to increase the overall intersection delay and increase the
overall intersecton crash rate. Statewide average severity rate indicates a potential increase in crash severity
5. Inefficient intersection operation during off peak periods

Cost: Approximately \$500,00 with ADA Improvements Mobility: LOS B (2045) Safety: 10% Increase in crash and severity rate
R/W: None
20-year Traffic Operation
20-year Traffic Opera Benefit: $(-\$ 3,050,616)$ 20-year Safety
(-\$171,503) Benefit/Cost:<0

Alternative B: Install Single Lane Roundabout

Description Options and Considerations - Single lane is expected to operate acceptably through Pro 2045 forecast

- Special attention would be required in design for trucks
and agricultural vehicles
- Spacing to adjacent frontage roads may present
design and/or operation challenges
- Existing ditches, drainage design and storm sewer system needs

Pros

1. Greatly improves access to Mn 220
2. Provides continuous flow of traffic and improves efficiency
3. Provides traffic calming
4. Improves pedestrian crossing (reduced exposure, improved sightline)
5. Reduces overall intersection crash rate and intersection crash severity
6. Aesthetics
7. Compatible with long term needs of TH 220 north of 23 rd Street NW 8. Intersection operations and delays are expectd to improve and provides the most overall efficient 24 hour operation.

Cons

1. More expensive to install than a traffic signal (but may be less in long run)
2. Requires more space at intersection (but less space along road)
3. Familiarity

Cost: Approximately $\$ 2,950,000$ Mobility: LOS A (2045) Safety: 41% reduction in crash Safety: 41% reduction in cras rate. 48% reduction in severity rate R/W: None
20-year Traffic Operation Benefit: $\$ 1,026,765$ Benefit: $\$ 1,026,765$
20-year Safety Benefit 20-year Safety Benefit $\$ 990,747$ Benefit/Cost: 0.98

5.4.3 Mn 220 \& $20^{\text {th }}$ Street NW

The intersection of Mn 220 at $20^{\text {th }}$ Street NW is located near Northland Community and Technical College. Currently it is at the 4-lane to 2-lane transition area and there is a pedestrian crosswalk, crossing the north leg of the intersection.
The following alternatives were identified to improve the pedestrian crossing and to improve quality of access at the adjacent intersections of $23^{\text {rd }}$ Street NW and $17^{\text {th }}$ Street NW:

- No build
- Alternative A: Convert to $3 / 4$ Access
- Alternative B: Convert to $3 / 4$ Access and Remove Southbound Left Turns

The intersection improvement options, design considerations, pros and cons, and estimated cost for each alternative are summarized in Table 5-8. Concept sketches are provided for reference in Appendix A. It should be noted that a benefit/cost ratio was not computed for the $20^{\text {th }}$ Street NW intersection, as the change in mobility and the benefit of improved pedestrian access associated with the proposed alternatives are mostly qualitative and not reliably quantifiable.

Table 5- 8. Alternatives Comparison Matrix - Mn 220 at $20^{\text {th }}$ Street NW Alternative A: Convert to 3/4 Access

Minimal impact/inconvenience to travel

- routes/destinations due to connectedness of the routes/destinations due to connectedness of the
urban network and the presence of frontage roads. urban network and the presence of frontage roads. - Consider curb extensions to minimize pedestria crosswalk distance on the north leg
wide median refuge island for pedestrias for a wide median refuge island for pedestrians. Greatly reducing crossing exposure and potential conflicts. Reduces need for 20 to reduce a the east side of Mn 220 to reduce need fo
pedestrians to cross at this intersection to continue north/south.
- Redistributed left/through movements help satisfy traffic signal warrants at 23rd Street NW and 17th Street NW
- Best compatibility with 2 -lane segment to the north of 20th Street, 2-lane or 4-lane (right turn lane drop) to the south

Pros and Cons

1. Will improve safety by decreasing conflict points and removing right angle type crash occurrences currently being experienced All work can be done within the existing ROW
2. Greatly improves the pedestrian crossing
3. Minimal ongoing maintenance
4. Improves overall quality of access along Mn 220
5. Expected to operate at a LOS A through forecast 2045 conditions

Cons

1. Expected ton increase utilization of the frontage roads and could
unnecessarily increase traffic volumes and turning movements on other minor roads
2. Public/business perception of reduced access

Cost: Approximately $\$ 600,000$ Mobility: LOS A Safety: Reduced Crash Rate (Reduces Right Angle Crashes) R/W: None
20-year Traffic Operation Benefit: NA
20-year Safety Benefit: NA Benefit/Cost: NA

5.4.4 Mn 220 at $17^{\text {th }}$ Street NW

The intersection of Mn 220 and $17^{\text {th }}$ Street NW is located near the East Grand Forks Senior High School and is the preferred crossing point for school-related pedestrians. The following alternatives were developed to improve intersection mobility, safety and pedestrian of Mn 220 :

- No build: Pedestrian Crosswalk Improvement
- Alternative A: Install Traffic Signal System
- Alternative B: Install Single Lane Roundabout

The intersection improvement options, design considerations, pros and cons, and estimated cost for each alternative are summarized in Table 5-10. Concept sketches are provided for reference in Appendix A. The No build (existing stop control) alternative highlights a potential short-term pedestrian crosswalk improvement strategy that includes constructing a small curb extension on the southwest corner to narrow the crossing distance, construct ADA compliant directional pedestrian ramps, reconstruct the median nose to provide refuge, and installing high visibility crosswalk markings and signing.

Traffic Operation Analysis

Results of the traffic operation analysis are detailed in Table 5-9. Although acceptable traffic operation is expected, the traffic operation analysis found that a traffic signal is expected to increase the overall intersection delay and would provide less efficient intersection operation during off-peak periods under existing conditions. Under future condition traffic volumes an operational benefit is expected. The roundabout alternative is expected to provide the most efficient intersection operations. However, longer PM peak hour northbound vehicle queues entering the roundabout are expected under the forecast year 2045 traffic demand.

Table 5- 9. Intersection Delay and LOS Summary - Mn 220 at $17^{\text {th }}$ Street NW

Year	Alternatives	AM Peak Hour		PM Peak Hour	
	Scenario	LOS	Delay (s)	LOS	Delay (s)
	No Build	A / B	2.6 / 12.2	A / B	2.8 / 13.6
	ALT A	A / D	6.3 / 44.7	A / C	7.4 / 33.3
	ALT B	A / A	2.0 / 3.9	A / A	2.4 / 3.2
$\begin{aligned} & \text { Ư } \\ & \text { N } \\ & \text { N} \\ & \text { ঠ̃ } \end{aligned}$	No Build	A / D	4.2 / 34.8	B / F	11.7 / 127.8
	ALT A	A / D	$6.8 / 43.8$	B / D	11.1 / 41.1
	ALT B	A / A	3.9 / 7.3	A / A	6.3 / 6.8
Overall Intersection LOS / Worst Approach LOS					

Table 5- 10. Alternatives Comparison Matrix - Mn 220 at 17 $^{\text {th }}$ Street NW

Alternative A: Install Traffic Signal System

fic Signal System			
Description	Options and Considerations	Pros and Cons	Comparison Summary
Install traffic signal system	- Install FYA on all approaches	Pros	
	- During AM and PM peak periods, operate	1. Can be designed with minor impact to street width and curbs	
	westbound, northbound and southbound	2. Improves left turn access onto Mn 220	
	prot/perm (operate eastbound permissive only)	3. FYA can improve motorist safety and flexibility for intersection	
	- Outside of peak periods, both eastbound/westbound operate permissive only	operation, including FYA omit funcationality with pedestrian actuation	Cost: Approximately $\$ 500,000$ with ADA Improvements and
	- Provide pedestrian crossing countdown timers,	4. Familiarity	Signal Communication
	crosswalks and intersection lighting	5. Compatible with long term needs of TH 220 north of 23rd Street NW	Mobility: LOS B (2045)
	- Provide signal communication and operate	6. Efficient off peak traffic operations (low delays)	Safety: 18% reduction in crash
	coordinated with 14th Street	7. Compatible with current 2045 MTP	rate and severity rate
	- Install lane eastbound/westbound lane designation and pavement markings (1-TH/LT, 1-RT)	8. Expected to result in a reduction in total number of intersection crashes (reduced crash rate) and crash severity.	R/W: None
			Benefit: (-\$1,777,272)
		Cons	20-year Safety Benefit:
		1. Ongoing operation, maintenance, and electricity costs	\$219,027
		2. Signal warrants not met until 2033 (warrant2) and 2038 (warrant 1) with $3 / 4$ access	Benefit/Cost:
		configuration at 20th Street NW) 3. Expected to increase the overall intersection delay under existing	<0
		3. Expected to increase the overall intersection delay under existing conditions and provide slightly improved delays under 2045 conditions.	
		4. Inefficient intersection operation during off peak periods	

Alternative B: Install Single Lane Roundabout				
	Description	Options and Considerations	Pros and Cons	Comparison Summary
	Construct single lane roundabout	- Single lane is expected to operate acceptably	Pros	
		through 2045 forecast	1. Greatly improves access to Mn 220	
		- Special attention would be required in design for	2. Provides continuous flow of traffic and improves efficiency	
		trucks and agricultural vehicles	3. Provides traffic calming	
		- Spacing to adjacent frontage roads requires careful attention to design for trucks. Evaluation indicates the design should be	4. Improves pedestrian crossing (reduced exposure, improved sightline)	
		feasible.	5. Reduces overall intersection crash rate and intersection crash	Cost: Approximately
		- Will eliminate the need to expand Mn 220 roadway	severity	\$2,600,000 Mobility: LOS A (2045)
		width to the north and provides for more effective	6. Aesthetics	Safity: 55% reduction in crash
		right turn lane design at 20th	7. Compatible with long term needs of TH 220 north of 23rd Street NW	Safety: 55% reduction in crash
		- Could consider R/W acquisition on the east side of	8. Intersection operations and delays are expectd to improve and	rate and severity rate. R/W: None
		the east frontage road to increase frontage road spacing with Mn 220	provides the most overall efficient 24 hour operation.	20 -year Traffic Operation
			Cons	Benefit: $11,487,692$
		- North/South pedestrian accommodations are difficult due to narrow spacing between Mn 220 and	1. More expensive to install than a traffic signal (but may be less in long run)	$\$ 647,421$
		Frontage Road. May require median closure of the	2. Requires more space at intersection (but less space along road)	
		frontage road on the east side, or routing pedestrian crossings	3. Familiarity	
		on the far east and far west sides of the frontage roads resulting in less direct travel path.	4. To accommodate the two northbound lanes on Mn 220 and to not introduce a lane drop, the ideal northbound lane configuration is a 2 -lane approach (1-left turn, 1 -through/right). All other approaches would be 1 lane entry.	

Safety Analysis

A safety analysis was completed for each alternative to help understand the anticipated level of improvement. The safety analysis includes investigating the change in crash types and/or the elimination in certain types of crashes and computing a monetary annual crash cost for each preliminary alternative. Table 5-11 summarizes the estimated change in intersection crash performance. Both Alternative A and Alternative B is expected to reduce the overall intersection crash rate and crash severity rate.

Table 5- 11. Intersection Safety Summary - Mn 220 at $17^{\text {th }}$ Street NW

| | No Build | Alternative A
 Signal
 Installation | Alternative B
 Single-lane
 Roundabout |
| :--- | :---: | :---: | :---: | :---: |
| Observed/Estimated Crash Rate
 (Crashes/MEV) | 0.71 | 0.58 | 0.32 |
| Observed/Estimated Injury Crashes
 (Percent of Total Crashes)* | 15.4% | 15.4% | 15.4% |
| Observed/Estimated Crash Severity Rate
 (Crashes/MEV) | 0.81 | 0.66 | 0.37 |
| 2045 Estimated Crash Cost
 (2018 Dollars)** | | | |
| *Severity proportions are assumed to be unchanged across No Build and alternatives due to the existing | | | |
| crash characteristics and high concentration of PDO crashes. | | | |
| ** Crash cost is in dollar unit based on MnDOT OIM Fiscal Year 2019 Values | $\$ 27,694$ | | |

5.4.5 Mn 220 at $15^{\text {th }}$ Street NE

The intersection of Mn 220 at $15^{\text {th }}$ Street NE is located near the East Grand Forks Senior High School. The following alternative was identified to improve the pedestrian crossing and to improve quality of access at the adjacent intersection of $17^{\text {th }}$ Street NW:

- No build
- Alternative A: Convert to $3 / 4$ Access and Provide Pedestrian Crosswalk
- Alternative B: Maintain Full Access and Provide Pedestrian Crosswalk with Reconstructed Pedestrian Refuge Median
The intersection improvement options, design considerations, pros and cons, and estimated cost for this alternative is summarized in Table 5-12. Concept sketches are provided for reference in Appendix A. It should be noted that a benefit/cost ratio was not computed for the $15^{\text {th }}$ Street NE intersection, as the change in mobility and the benefit of improved pedestrian access associated with the proposed alternatives are mostly qualitative and not reliably quantifiable.

Table 5- 12. Alternatives Comparison Matrix - Mn 220 at $\mathbf{1 5}^{\text {th }}$ Street NE Alternative A: Convert to $\mathbf{3 / 4}$ Access
Description Options and Considerations

Lesconstruct intersection to a $3 / 4$ access	- Minimal impact/inconvenience to travel routes/destinations due to connectedness of the
configuration. Three-quarter intersections are an access	urban network and the presence of frontage roads.
management technique that limits	- Consider curb extension on the west side fill in
cross street movements through an	
intersection. A median in installed in the	shoulder) to minimize pedestrian crosswalk
distance on the south leg	

Pros and Cons

1. Will improve safety by decreasing conflict points and removing
right angle type crash occurrences currently being experienced
2. All work can be done within the existing ROW
3. Greatly improves the pedestrian crossing whether marked or unmarked
4. Minimal ongoing maintenance
5. Improves overall quality of access along Mn 220

Cons

1. Will increase the utilization of the frontage road and could
unnecessarily increase traffic volumes and turning movements on other minor roads

Comparison Summary

M urban network and the presence of frontage roads. shoulder) to minimize pedestrian crosswalk distance on the south leg
edian rexting costing exposure and potentials. signal warrants at 17th Street NW
side of the intersection.
2. Public/business perception of reduced access

Cost: Approximately $\$ 490,000$ Mobility: LOS A (2045) Safety: Reduced Right Angle Crashes R/W: None 20-year Traffic Operation Benefit: NA 20-year Safety Benefit: NA Benefit/Cost: NA

Maintain full access intersection and - Provide high visibility crosswalk markings and add crosswalk with wide pedestrian median on south leg.
pedestrian crosswalk signing

- Maintain full access if median closure of frontage
road is necessary for the roundabout alternative at 17th Street to provide best network circulation - Consider curb extension on the west side (fill in shoulder) to minimize pedestrian crosswalk distance on the south leg
- Reconstruct the median to provide for a wid
median refuge island for pedestrians. Greatly reducing crossing exposure and potential conflicts.

1. All work can be done within the existing ROW
2. Establihes pedestrian crosswalk and improves the pedestrian crossing distance
and reduces exposure
3. Minimal ongoing maintenance

Cons

1. Does not meet $1 / 4$ mile full access spacing guidelines

Cost: Approximately $\$ 350,000$ Mobility: LOS C (2045) Safety: No Change R/W: None
20-year Traffic Operation Benefit: NA 20-year Safety Benefit: NA
Benefit/Cost: NA

5.4.6 Mn 220 at $14^{\text {th }}$ Street NW

The intersection of Mn 220 at $14^{\text {th }}$ Street NW is located less than $1 / 4$ of a mile north of US 2 . It is currently signalized and serves as a primary intersection along the Mn 220 corridor. The following alternatives are developed to improve mobility and intersection safety:

- No build
- Alternative A: Rebuild Signal System and Signal Coordination with US 2
- Alternative B: Construct Multi-Lane Roundabout (2 Mainline Entry Lanes x 1 CrossStreet Entry Lane)

The intersection improvement options, design considerations, pros and cons, and estimated cost for each alternative are summarized in Table 5-14.

Traffic Operation Analysis

Results of the traffic operation analysis are detailed in Table 5-13. The traffic operation analysis found that an improved traffic signal system is expected to improve intersection delay. A multilane roundabout is expected to provide the most efficient intersection operations.

Table 5- 13. Intersection Delay and LOS Summary - Mn 220 at $14^{\text {th }}$ Street NW

	Alternatives	AM Peak Hour		PM Peak Hour	
Year	Scenario	LOS	Delay (s)	LOS	Delay (s)
	No Build	B / B	10.3 / 15.5	B / B	11.3 / 15.4
	ALT A	A / C	9.7 / 32.8	B / C	11.6 / 33.6
	ALT B	A / A	1.7 / 3.2	A / A	1.9 / 3.6
NNNNNλ	No Build	A / B	9.2 / 17.3	B / B	11.6 / 19.5
	ALT A	A / C	8.3 / 32.4	B / C	10.9 / 34.9
	ALT B	A / A	2.1 / 4.4	A / A	2.4 / 5.6

Overall Intersection LOS / Worst Approach LOS
Overall Intersection Delay / Worst Movement Delay

Safety Analysis

A safety analysis was completed for each alternative to help understand the anticipated level of improvement. The safety analysis includes investigating the change in crash types and/or the elimination in certain types of crashes and computing a monetary annual crash cost for each preliminary alternative. Table 5-15 summarizes the estimated change in intersection crash performance. The installation of flashing yellow arrow (FYA), a westbound left turn arrow and signal coordination is expected to reduce intersection crashes by approximately 28 percent. It should be noted that multilane roundabouts typically experience higher crash rates than single lane entries. In other words, the total number of crashes at a multilane roundabout is expected to increase compared to traffic signal control. However, the percentage of injury related crashes (specifically Type A and Type B) is typically reduced as illustrated for Alternative B.

Table 5- 14. Alternatives Comparison Matrix - Mn 220 at $14^{\text {th }}$ Street NW Alternative A: Rebuild Signal System

Pros and Cons

to current existing traffic signal system - Install FYA on all approaches

- During AM and PM peak periods, operate westbound, northbound and southbound protected/permissive (operate eastbound permissive only)
- Outside of peak periods, operate both eastbound/westbound permissive only
- Install signal communication and coordinated signal timing with US 2
- Install pedestrian countdown timers
- Update the pedestrian and vehicle clearance intervals
- Install eastbound/westbound lane designation signs
and pavement markings (1-TH/LT, 1-RT)

1. Can be designed with minor to no impact to street width and curbs
2. The addition of FYA and the westbound left turn arrow Improves left turn access onto Mn 220 and separates the conflicts which is expected to result in a reduction of intersection crashes
3. Signal coordination is expected to greatly reduce the potential for rear end crashes and improve overall corridor operation
4. FYA can improve motorist safety and intersection operation and provides flexibility to change left turn operation to improve safety
5. Pedestrian countdown timers can provide pedestrian safety
6. Familiarity

Cons

1. Ongoing operation, maintenance, and electricity costs
2. Overall is not the most efficient intersection operation over a full

24-hour day (higher off peak delays)

Cost: Approximately \$300,000 with Traffic Signal Interconnection to US 2 Mobility: LOS B (2045) Safety: 29% reduction in crash rate and 33% reduction in crash severity rate. R/W: None 20-year Traffic Operation Benefit: $\$ 371,482$ 20-year Safety Benefit: \$1,955,479 Benefit/Cost: 9.50

Alternative B: Install Multilane (2 x 1) Roundabout

Table 5- 15. Intersection Safety Summary - Mn 220 at $14^{\text {th }}$ Street NW

	No Build	Alternative A Signal Improvements	Alternative B $\mathbf{2 x 1}$ Roundabout
Observed/Estimated Crash Rate (Crashes/MEV)	0.70	0.50	0.76
Observed/Estimated Injury Crashes (Percent of Total Crashes)	22.2%	19.7%	18.5%
Observed/Estimated Crash Severity Rate (Crashes/MEV)	0.94	0.63	0.93
2045 Estimated Crash Cost (2018 Dollars) *Crash cost is in dollar unit based on MnDOT OIM Fiscal Year 2019 Values	$\$ 117,745$	$\$ 127,210$	

5.4.7 Mn 220 at US 2

The intersection of Mn 220 and US 2 is an existing signalized intersection of two major arterial roadways. The intersection crash rate and severity rate are above critical rates and the intersection mobility is expected to reach unacceptable LOS by 2045. The following alternatives are developed to address intersection deficiencies, improve mobility and improve safety for all modes:

- No build
- Alternative A: Rebuild Signal System
- Alternative A-0: Rebuild Signal System with Offset Eastbound/Westbound Left Turn Lanes
- Alternative A-1: Rebuild Signal System with Dual Eastbound Left Turn Lanes
- Alternative A-2: Rebuild Signal System with Right Turn Channelization Improvements
- Alternative A-3: Rebuild Signal System with Offset Eastbound/Westbound Left Turn Lanes and Right Turn Channelization Improvements
- Alternative B: Install Multi-Lane Roundabout
- Alternative C: Construct a Displaced Eastbound Left Turn
- Alternative D: Grade Separated Tight Diamond Interchange
- Alternative E: System Improvements - 5th Avenue NW Access

The intersection improvement options, design considerations, pros and cons, and estimated cost for each alternative are summarized in Table 5-16. Concept sketches are provided for reference in Appendix A.

Table 5- 16. Alternatives Comparison Matrix - Mn 220 at US 2

Alternative A: Rebuild Signal System			
Description	Options and Considerations	Pros and Cons	Comparison Summary
Rebuild the traffic signal system to current standards. Alternative assumes no changes to the intersection geometric design. All safety and capacity improvements are operational or signal system related.	- Install FYA on all approaches - Operate eastbound/westbound protected only 11 am to 6 pm and northbound protected/permissive all day - Implement FYA Omit logic for pedestrian actuations - Install communication and coordinate signal timing with 14th Street NW and 5th Avenue NE - Implement a southbound right turn overlap (concurrent with the eastbound left turn) - Install pedestrian countdown timers - Update the pedestrian and vehicle clearance intervals to current standards - Add an additional overhead signal indication for each approach to improve visibility and provide yellow backplate for FYA left turn indications	Pros 1. Can be designed with no impact to street width and curbs 2. Improves left turn access onto Mn 220 3. FYA provides operational flexibility and is expected to improve motorist safety and intersection operation 4. Low cost 5. Familiarity 6. Expected to reduce the overall intersection crash rate and provide an improvement to the overall intersection crash severity Cons 1. Ongoing operation, maintenance, and electricity costs 2. Operational improvement is minimal. LOS D is expected in 2045 3. Does not address the right turn related crashes or pedestrian comfort of crossing the intersection.	Cost: Approximately \$350,000 including communication to US 2/5th Avenue NE Mobility: LOS D (2045) Safety: 25% decrease in crash rate. 23% decrease in severity rate. R/W: None 20-year Traffic Operation Benefit: (-\$1,922,257) 20-year Safety Benefit: \$2,111,426 Benefit/Cost: 0.66
Alternative A-0: Rebuild Signal System with Offset EB/WB Left Turn Lanes			
Description	Options and Considerations	Pros and Cons	Comparison Summary
In addition to rebuilding the signal system as described in Alternative A, Alternative A-O involves the realignment of left turn lanes on US 2 to provide a positive lateral offset for improved motorist sight lines and visibility.	- Turn lanes may be tapered or parallel - Can be achieved with striping a buffer if no new median is desired - A pedestrian refuge could be provided if roadway is widened significantly - Implement a southbound right turn overlap (concurrent with the eastbound left turn) - Install FYA on all approaches - Operate eastbound/westbound protected only 11 am to 6 pm and northbound prot/perm all day - Implement FYA Omit logic for pedestrian actuations - Install communication and coordinate signal timing with 14th Street NW and 5th Avenue NE - Install pedestrian countdown timers - Update the pedestrian and vehicle clearance intervals to current standards - Add an additional overhead signal indication for each approach to improve visibility and provide yellow backplate for FYA left turn indications	Pros 1. Can be designed with minor impact to street width and curbs 2. Improves left turn access onto Mn 220 3. FYA provides operational flexibility and with the offset left turn lanes is expected to improve motorist safety and intersection operation 4. Low cost 5. Familiarity 6. Expected to reduce the overall intersection crash rate and provide an improvement to the overall intersection crash severity Cons 1. Ongoing operation, maintenance, and electricity costs 2. Operational improvement is minimal. LOS D is expected in 2045 3. Does not address the right turn related crashes or pedestrian comfort of crossing the intersection.	Cost: Approximately \$2,350,000 Mobility: LOS D (2045) Safety: 31\% decrease in crash rate. 28% decrease in severity rate. R/W: None 20-year Traffic Operation Benefit: ($-\$ 1,922,257$) 20-year Safety Benefit: \$2,721,822 Benefit/Cost: 0.48
Alternative A-1: Rebuild Signal System with Dual EB Left Turn Lanes			
Description	Options and Considerations	Pros and Cons	Comparison Summary
In addition to rebuilding the signal system as described in Alternative A, Alternative A-1 involves the construction of dual eastbound left turn lanes on US 2. The westbound left turn lane would be offset to provide a positive lateral offset for improved motorist sight lines and visibility.	- A pedestrian refuge could be provided if roadway is widened significantly - Install FYA on all approaches - Operate eastbound/westbound protected only 6 am to 10 pm and northbound prot/perm all day - Implement FYA Omit logic for pedestrian actuations - Install communication and coordinate signal timing with 14th Street NW and 5th Avenue NE - Implement a southbound right turn overlap (concurrent with the eastbound left turn) - Install pedestrian countdown timers - Update the pedestrian and vehicle clearance intervals to current standards - Add an additional overhead signal indication for each approach to improve visibility and provide yellow backplate for FYA left turn indications	Pros 1. Expected to operate at a LOS C in year 2045. Provides the greatest operational benefit while maintaining the signalized intersection control 2. Expected to provide sufficient capacity to minimize the need for the 5th Avenue NW full access intersection with US 2 3. FYA provides operational flexibility and with the offset left turn lanes is expected to improve motorist safety and intersection operation 4. Familiarity 5. Expected to reduce the overall intersection crash rate and provide an improvement to the overall intersection crash severity Cons 1. Vehicles may not evenly distribute between lanes 2. Requires additional roadway width 3. Dual lanes tend to result in increased crashes as the intersection becomes wider 4. Does not address the right turn related crashes or pedestrian comfort of crossing the intersection.	Cost: Approximately \$2,350,000 Mobility: LOS C (2045) or LOS D if No Connection at 5th Ave Safety: 27% decrease in crash rate. 25% decrease in severity rate. R/W: None 20-year Traffic Operation Benefit: \$5,095,230 20-year Safety Benefit: \$2,363,174 Benefit/Cost: 4.47

Table 5- 16. Alternatives Comparison Matrix - Mn 220 at US 2 Continued

Table 5- 16. Alternatives Comparison Matrix - Mn 220 at US 2 Continued Alternative C: Displaced EB Left Turn

Description	Options and Considerations
A displaced left turn (DLT) will move the eastbound left-turn movement from US	- Overall roadway typical section width is expected to impact the frontage road.
2/Mn 220 to an upstream signalized	- An additional traffic signal system located
location. Traffic that would turn left at	pproximately mid way between Mn 220 and 5th Avenue
Mn 220 in a conventional design now	is needed to facilitate the displaced left turn cross over.
has to cross opposing through lane	The traffic signal systems
signal-controlled intersection	- Eastbound left turn storage length needs to balanced
feet upstre	potential future 5th A
on a new roadway parallel to the	r full access interse
sing lanes. This traffic is now	right
execute the left turn simultaneously	designed as a free operating movement to avoid
with the westbou	conflicting at the intersection with the displaced left
the US $2 / \mathrm{Mn} 220$ intersection.	turn.

Pros
Pros and Cons
Comparison Summary

1. Improves intersection capacity by removing a high volume conflicting movement at the US $2 / \mathrm{Mn} 220$ intersection
2. FYA provides operational flexibility and with the offset left turn lanes is
expected to improve motorist safety and intersection operation
providing an improved level of left turn control. Anticipated the crash performance will be similar to Alternative A-0.

Cons

1. Ongoing operation, maintenance, and electricity costs. Snow removal will be much more difficult
. High construction cost
. Adds an additional traffic signal system to the network
Requires R/W and frontage road impacts
2. Familiarity. Likely result in motorist confusion

Cost: Approximatel

 $\$ 2,900,000$Mobility: LOS C (2045) Safety: 25% decrease in crash rate. 23% reduction in severity rate. R / W : Frontage Road Impact 20-year Traffic Operation Benefit: $\$ 9,010,428$ 20-year Safety Benefi $\$ 2,111,426$
Benefit/Cost: 5.41

Alternative D: Grade Separated Tight Diamond Interchange

Description	Options and Considerations
A compressed diamond interchange	- Traffic signals would be provided at the ramp termina intersections with either US 2 or Mn 220 separated over the top
	grade
	- Traffic signal coordination will be required
	reta diamond interchanges require significant
retaing wall construction to reduce space and R / w	
acquisition footprint. This however, greatly increases	
the construction cost	

Pros and Cons
Comparison Summary
intersections
Traffic signal coordination will be required

- Tight diamond interchanges require significant retaining wall construction to reduce space and R / W
acquisition footprint. This however, greatly increases the construction cost

1. Effectively separates volumes from conflicting movements
2. Provide long term efficient traffic operation

Reduces vehicle conflicts and is expected to improve overall intersection safety

Cons: Significant cost and Right of Way acquisition
2. Will impact businesses and local resident properties
3. Will disrupt the frontage road connections
4. May require closure or reroute of neighboring roads
5. Significant cost and impacts for comparable benefit to other
alternatives
6. A grade separated interchange will significantly impact the visibility
and presence of remaining businesses near this intersection.

Cost: High. > \$15,000,000 to 20M excluding R / W and property acquisition costs Mobility: NA Safety: NA R/W: Significant Impact 20-year Traffic Operation 20-year Traffic
Benefit: NA
Benefit: NA
20 -year Safety Benefit: NA Benefit/Cost: NA

Alternative D2: Grade Separated Partial Interchange

Alternatives Development and Evaluation

Table 5- 16. Alternatives Comparison Matrix - Mn 220 at US 2 Continued
Alternative D3: Grade Separated Westbound Overpass

	Description	Options and Considerations	Pros and Cons	Comparison Summary
	The current 2045 MTP identifies a full access signalized intersection at the US 2/5th Avenue NW intersection (Currently RI/RO on the south side). Full access will provide additional connectivity to the neighborhood reducing traffic demand at the US $2 / \mathrm{Mn}$ 220 intersection. Alternative $\mathrm{E}-1$: Couple with Alt $\mathrm{A}-1$ Alternative E-2: Couple with Alt A-3 Alternative $\mathrm{E}-3$: Couple with Alt B	- Provide full access intersection with traffic signal system operating in coordination with the US $2 / \mathrm{Mn} 220$ intersection - Maintaining the existing 5th Avenue NW intersection configuration results in an approximate 1,900 ADT increase to Mn 220 - Streetlight Origin-Destination analysis found the existing eastbound left turn at the US $2 / \mathrm{Mn} 220$ intersection would decrease by 95 (33\%) and 50 (18\%) vehicles during the AM and PM peak hours, respectively - North of 14th Street, a marginal change in overall ADT on Mn 220 is expected.	Pros: 1. Provides improved access to the neighborhood 2. Reduces vehicle demand at the US $2 / \mathrm{Mn} 220$ intersection 3. Can be designed to provide acceptable safety and traffic operations into forecast year 2045 Cons: 1. High cost 2. Will impact businesses and local resident properties and will increase traffic circulating on neighborhood streets that currently experience low traffic volumes 3. May not be funded or approved for construction Key Conclusion: 1. 3/4 Access or full access signalized intersection overall provides a positive benefit to the transportation system and should be considered a viable long term alternative 2. Without the 5th Avenue NW access, the single eastbound left turn lane alternatives at US $2 / \mathrm{Mn} 220$ may not be feasible alternatives due to intersection capacity constraint	NA

Traffic Operation Analysis

Results of the traffic operation analysis are detailed in Table 5-17. All alternatives were evaluated with consideration of the 2045 MTP illustrative project to provide signalized full access at the $5^{\text {th }}$ Avenue NW intersection with US 2. Under this assumption, the traffic operation analysis found that the roundabout alternative is expected to provide the most overall efficient 24-hour operation and Alternative A-1 (dual left turn) is expected to operate at a LOS C. The analysis indicates that additional capacity is needed for the eastbound left turn movement (dual left). Alternative C (displaced left turn) is expected to operate very similar to Alternative A-1. Three alternatives were evaluated with consideration that the $5^{\text {th }}$ Avenue NW full access is not constructed (Alternative E-1, E-2 and E-3). Further discussion of Alternative E is provided in a following section.

Table 5- 17. Intersection Delay and LOS Summary - Mn 220 at US 2

Year	Alternatives	AM Peak Hour		PM Peak Hour	
	Scenario	LOS	Delay (s)	LOS	Delay (s)
$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \underset{N}{\varpi} \\ & \underset{\sim}{0} \end{aligned}$	No Build	B / C	19.3 / 25.4	C / C	20.2 / 23.6
	ALT A	C / D	24.7 / 41.5	C / D	25.9 / 40.9
	ALT A-0	C / D	24.7 / 41.5	C / D	25.9 / 40.9
	ALT A-1	C / D	24.4 / 40.7	C / D	25.8 / 39.3
	ALT A-2	C / D	24.9 / 41.6	C / D	26.8 / 41.6
	ALT A-3	C / D	24.9 / 41.6	C / D	26.8 / 41.6
	ALT B	A / A	2.5 / 4.6	A / A	3.0 / 4.8
	ALT C	C / C	21.2 / 24.6	C / C	$21.8 / 28.6$
$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { N} \\ & \underset{\sim}{0} \end{aligned}$	No Build	D / D	37.9 / 48.4	D / E	44.8 / 66.2
	ALT A	D / D	38.6 / 54.3	D / E	39.7 / 58.2
	ALT A-0	D / D	38.6 / 54.3	D / E	39.7 / 58.2
	ALT A-1	C / D	29.4 / 45.9	C / D	31.1 / 45.4
	ALT E-1	C / D	33.9 / 46.7	D / D	35.9 / 44.7
	ALT A-2	D / D	39.6 / 54.8	D / D	38.4 / 53.8
	ALT A-3	D / D	39.6 / 54.8	D / D	38.4 / 53.8
	ALT E-2	D / D	41.3 / 52.5	E/F	68.2 / 177.6
	ALT B	A / B	8.2 / 13.9	A / C	8.9 / 16.9
	ALT E-3	B / D	13.0 / 28.3	C / E	15.4 / 39.8
	ALT C	C / C	27.0 / 29.9	C / C	30.1 / 34.7

Overall Intersection LOS / Worst Approach LOS
Overall Intersection Delay / Worst Movement Delay

Safety Analysis

A safety analysis was completed for each alternative to help understand the anticipated level of improvement. The safety analysis includes investigating the change in crash types and/or the elimination in certain types of crashes and computing a monetary annual crash cost for each preliminary alternative. For each alternative, Crash Modification Factors (CMF) were developed
and applied to specific correctable crashes based on the various safety improvement measures. Key safety improvements include FYA operation with protected only arrows by time of day, improved visibility of traffic signal indications, improved sight lines with offset left turn lanes, improved right turn lane geometrics and traffic signal coordination. It should be noted that multilane roundabouts typically experience higher crash rates than single lane entries. In other words, the total number of crashes at a multilane roundabout is expected to increase compared to traffic signal control. However, the percentage of injury related crashes (specifically Type A and Type B) is typically reduced, even though the severity rate is increased (skewed high due to significant increase of PDO crashes) as illustrated for Alternative B. Table 5-18 summarizes the estimated change in intersection crash performance.

Table 5- 18. Intersection Safety Summary - Mn 220 at US 2

	No Build	Alternative A Signal Improvements	Alternative A-0 Alternative A + Offset EB/WB LT Lanes	Alternative A-1 Alternative A + Dual EB LT Lanes	Alternative A-2 Alternative A + RT Channelization Improvements	Alternative A-3 Alternative A + Offset EB/WB LT Lanes + RT Channelization	Alternative B 2-lane Roundabout	Alternative C Displaced EB LT
Observed/Estimate d Crash Rate (Crashes/MEV)	1.27	0.95	0.88	0.93	0.94	0.87	2.18	0.95
Observed/Estimate d Injury Crashes (Percent of Total Crashes)	28.6\%	30.1\%	29.9\%	29.7\%	30.5\%	30.2\%	14.4\%	30.1\%
Observed/Estimate d Crash Severity Rate (Crashes/MEV)	1.90	1.47	1.36	1.43	1.46	1.35	2.56	1.47
2045 Estimated Crash Cost (2018 Dollars)*	\$895,801	\$746,416	\$706,534	\$729,992	\$751,386	\$703,712	\$596,976	\$746,416

US 2 \& $5^{\text {th }}$ Avenue NW Intersection Impact

An illustrative project identified in the 2045 MTP involves constructing a full access intersection (with a traffic signal) at the US $2 / 5^{\text {th }}$ Avenue NW intersection. This intersection, which currently is right-in right-out on the south leg only, is located about $1 / 4$ of a mile to the west of the Mn 220 corridor. Due to the proximity of this intersection and the large volume of eastbound left turns at the Mn 220/US 2 study intersection, this project would be expected to have a minor impact on the southern half of the Mn 220 study corridor. The Regional Travel Demand model indicates that the ADT on Mn 220, north of US, without the $5^{\text {th }}$ Avenue NW access increases by approximately 1,900 vehicles (i.e., approximately 190 total vehicles during the PM peak hour). Observations were made to understand how many of the current eastbound left turns at Mn 220/US 2 access the neighborhood via $14^{\text {th }}$ Street and $17^{\text {th }}$ Street. It is these motorists that are likely to use the future $5^{\text {th }}$ Avenue NW connection. Figure 5-2 illustrates the estimated origin/destination. It should also be noted that a similar project was identified in the 2045 MTP at US $2 \& 2^{\text {nd }}$ Avenue NE, less than $1 / 4$ of a mile to the east of the study corridor. This project was also taken into consideration but is expected to have a negligible effect on Mn 220 or the Mn 220/US 2 intersection demand.

Figure 5- 2. 5 ${ }^{\text {th }}$ Avenue NW Intersection Origin-Destination Demand
The analysis indicates there is operational value of the $5^{\text {th }}$ Avenue NW intersection and it should continue to be considered a viable future project (specifically as it relates to providing an eastbound left turn off of US 2 onto northbound $5^{\text {th }}$ Avenue NW). Whether or not there is a future access to neighborhood at $5^{\text {th }}$ Avenue NW may have implications on potential intersection alternatives at Mn 220/US 2. Without the future $5^{\text {th }}$ Avenue NW access, the analysis indicates that the single eastbound left turn lane concepts at the US $2 / \mathrm{Mn} 220$ intersection may still have capacity concern during the peak hours under forecast year 2045 traffic volumes.

5.4.8 DeMers Avenue at $10^{\text {th }}$ Street NE

The intersection of DeMers Avenue \& $10^{\text {th }}$ Street is located less than $1 / 8$ of a mile south of US 2 and the location where DeMers Avenue transitions from a four-lane roadway to a three-lane roadway. One potential intersection improvement alternative was developed to address future stop control motorist delay and intersection safety.

- No build
- Alternative A: Convert to $3 / 4$ Access

The intersection improvement options, design considerations, pros and cons, and estimated cost for each alternative are summarized in Table 5-19. In review of the supporting street network and business accesses, the feasibility of a $3 / 4$ access configuration at this location may require alternative access to US 2, via extension of $10^{\text {th }}$ Street NW to $5^{\text {th }}$ Avenue NW.

Table 5- 19. Alternatives Comparison Matrix - Mn 220 at 10 ${ }^{\text {th }}$ Street NE

Convert to 3/4 Access

1. Will improve safety by decreasing conflict points
2. All work can be done within the existing ROW
. Minimal ongoing maintenance
3. Will improve the overall intersection operation (reduce delays)

Cons

1. Could unnecessarily increase traffic volumes and turning
movements on other minor roads
2. Potential for increased U-turn related crashes
3. Public/business perception of reduced access

Cost: NA Mobility: LOS A Safety: Reduced Right Angle Crashes R/W: None 20-year Traffic Operation Benefit: NA 20-year Safety Benefit: NA Benefit/Cost: NA

5.5 Identification of Segment Alternatives

To address identified deficiencies, the purpose and needs for the Mn 220 corridor, and planning for future growth north of $23^{\text {rd }}$ Street NW, alternatives for two key roadway segments were developed:

- Segment A: $23^{\text {rd }}$ Street NW to $140^{\text {th }}$ Street SW
- Segment B: $17^{\text {th }}$ Street NW to $23^{\text {rd }}$ Street NW

5.5.1 Segment A: $23^{\text {rd }}$ Street NW to $140^{\text {th }}$ Street SW

The following alternatives are proposed to add long term roadway capacity and safety at future development access along the corridor:

- Alternative A: Two-Lane Roadway with Left Turn Lanes
- Alternative B: Convert to Three-Lane Cross-Section with Two Way Center Left Turn Lane

Figure 5-3 illustrates the anticipated roadway typical section under existing conditions and widening to accommodate left turn and/or right turn lanes at future accesses. As shown, the future pavement width need is approximately 53 feet (Alternative A or Alternative B) or 57 feet if a right turn lane is also provided. In any of the alternatives, the existing 150 feet right of way is expected to be enough in accommodating the future roadway width and rural roadway design.

Figure 5- 3. Roadway Typical Section Comparison - $\mathbf{2 3}^{\text {rd }}$ Street NW to $\mathbf{1 4 0}{ }^{\text {th }}$ Street SW

The considerations, pros and cons for each segment alternative are summarized in Table 5-20.

5.5.2 Segment B: $17^{\text {th }}$ Street NW to $23^{\text {rd }}$ Street NW

The 2045 MTP identified an illustrative project to extend the existing four lane roadway (currently transitions to two lanes at $17^{\text {th }}$ Street NW) to $23^{\text {rd }}$ Street NW. The various traffic control device, intersection improvement options, and pedestrian crossing considerations may influence the potential typical section alternatives for this segment of Mn 220. The following alternatives were developed:

- Alternative A: Extend 4-Lane Roadway Segment to 23rd Street NW
- Alternative B: Convert 17th Street NW to 23rd Street NW Segment to 2-Lane Roadway
- Alternative C: Extend 4-Lane Roadway Segment to 20th Street NW

Figure 5-4 shows each of these alternatives and details the compatibility with applicable intersection control alternatives. The pros and cons for each segment alternative are summarized in Table 5-21.

Figure 5-4. $\mathbf{1 7}^{\text {th }}$ Street to $\mathbf{2 3}^{\text {rd }}$ Street Segment Alternatives Traffic Control Compatibility Comparison

Alternatives Development and Evaluation

Table 5- 20. Alternatives Comparison Matrix - Segment A - 23 ${ }^{\text {rd }}$ Street NW to $\mathbf{1 4 0}^{\text {th }}$ Street SW
No Build

Description Compatibility		Pros and Cons
Maintain 2-lane roadway between 23rd Street NW Compatible with any proposed intersection alternatives.	Pros	
and 140th Street SW. No turn lanes into driveways	1. Does not have property, drainage or residential driveway impacts	
or at future intersections.	2. Does not require roadway widening	
	3. Maintains LOS C or better through forecast year 2045 projection	
	4. Consistent corridor typical section and treatment of residential driveways.	
	Cons	

Alternative A: Two-Lane Roadway with Left Turn Pockets
Description
Maintain 2-lane roadway, and add left turn pockets at future intersections.

1. Expected to provide more efficient traffic operations along segment and at future development access intersections 2. Left turn lanes will improve the corridor safety with the introduction of increased left turning vehicles
2. Provides opportunity for residents accessing private driveways to move out of traffic lane.
. Can easily be constructed one access at a time as development occurs. Does not depend upon a full segment reconstruction to develop the roadway typical section
3. Overall, would only require about 50% of the segment between 23 rd Street NW and 140 th Street SW to be reconstructed.
4. Estimated to fit within the existing R / W

Cons

1. Requires roadway widening on both sides of access with left turn lanes. Corridor would be widened to transition in and out of left turn bays
2. May provide inconsistent message for motorists accessing private driveways. In some cases turns can be made from turn lane, but other driveways not the case. Could cause confusion.
3. Widening for left turn lanes will impact residential driveways and drainage ditches. Approximately $7-9$ feet of additional widening on each side of the road

Alternative B: Convert to 3-Lane Cross-Section
Description Compatibility
Widen roadway between 23 rd Street NW and Compatible with any proposed intersection alternatives.
140th Street SW to 3-lane cross-section (2-lane
with two-way center left turn lane along entire
segment).

Pros

Pros and Cons

1. Expected to provide most efficient traffic operations along segment and at future development access intersections
2. Left turn lanes will improve the corridor safety with the introduction of increased left turning vehicles
3. Most consistent design to accommodate private residential driveways and future development access.
4. Estimated to fit within the existing R / W

Cons

1. Requires roadway reconstruction and widening the full length of the corridor. High Cost for low residential driveway left turn movements.
2. Widening for left turn lanes will impact residential driveways and drainage ditches. Approximately $7-9$ feet of additional widening on each side of the road
3. Not as easily implemented with stage construction that may be necessary with varying timeline for new land development access

Technical Memorandum \#4

Alternatives Development and Evaluation

Table 5- 21. Alternatives Comparison Matrix - Segment B-17 ${ }^{\text {th }}$ Street NW to $\mathbf{2 3}^{\text {rd }}$ Street NW

No Build		
Description	Compatibility	Pros and Cons
Maintain existing Mn 220 roadway cross-section	- At 23rd Street NW	Pros
and existing lane transition point. Make	- No Build	1. Compatibility with a variety of intersection alternatives
intersection improvements only.	- Alternative A: Install Signal System	2. Low cost. Minimal to no roadway reconstruction
	- At 20th Street NW	3. Maintains existing and projected future segment LOS C or better. Added capacity is not necessary
	- No Build	
	- Alternative A: Convert to 3/4 Access	Cons
	- Alternative B: Convert to $3 / 4$ Access and also Prohibit Southbound Left Turns	1. Does not address lane utilization and motorists driving in the shoulder north of 17th Street NE to make right turn at 20th Street NE
	- At 17th Street NW	2. Wide roadway and higher roadway speeds reduce pedestrian comfort and make pedestrian crossings more difficult
	- No Build	
	- Alternative A: Install Signal System	
Alternative A: Extend 4-Lane Roadway Segment to 23rd Street NW		
Description	Compatibility	Pros and Cons
Extend 4-lane roadway segment to 23rd Street NW. Northbound right lane would terminate as right turn only lane at 23 rd Street NW	- At 23rd Street NW	Pros
	- No Build	1. Currently an illustrative project identified in the 2045 MTP
	- Alternative A: Install Signal System	2. Most compatible with the long term consideration of traffic signal installations at 17th Street NW and 23 rd Street NW
	- At 20th Street NW	
	- No Build	Cons
	- Alternative A: Convert to 3/4 Access	1. Requires substantial roadway widening. High Cost
	- Alternative B: Convert to 3/4 Access and also Prohibit Southbound Left Turns	2. Wide roadway and higher roadway speeds reduce pedestrian comfort and make pedestrian crossings more difficult, specifically at the 20th Street NW
	- At 17th Street NW	pedestrian crossing.
	- No Build - Alternative A: Install Signal System	3. Adds roadway capacity that isn't needed.
Alternative B: Convert 17th Street NW to 23rd Street NW Segment to 2-Lane Roadway		
Description	Compatibility	Pros and Cons
Convert the entire segment to a 2-lane roadway between 17th Street NW and 23rd Street NW. Maintain right and left turn lanes at nonroundabout intersections	- At 23rd Street NW	Pros
	- No Build	1. Best compatibility with roundabout alternative at 17 th Street NW and 23 rd Street NW. However, could also be compatible with traffic signal installations at
	- Alternative A: Install Traffic Signal	both locations.
	- Alternative B: Install Single-Lane Roundabout	2. Improves pedestrian comfort, reduces intersection pedestrian crossing distances. Provides best opportunity to improve the pedestrian crosswalk at 20th
	- At 20th Street NW	Street NW
	- No Build	3. Could increase distance between Mn 220 and the frontage roads
	- Alternative A: Convert to 3/4 Access - Alternative B: Convert to 3/4 Access and also Prohibit Southbound Left Turns	4. Reduces feel of wide roadway and likely could result in reduced vehicle travel speeds, supporting a future speed zone reduction between 17 th Street NW and 23rd Street NW
	- At 17th Street NW o Alternative A: Install Traffic Signal	5. Addresses the northbound motorist lane utilization and driving within the existing shoulder issue. If traffic signal installed at 17 th Street NW, the northeast corner could be curb extended to reduce pedestrian crossing distance, improving pedestrian safety.
	- Alternative B: Install Single-Lane Roundabout	
		Cons
		1. Low to Moderate reconstruction cost. Require some curb and pavement work north of 17 th Street NW to be most effective
		2. Reducing travel lanes may not be perceived acceptable by area businesses.
Alternative C: Extend 4-Lane Roadway Segment to 20th Street NW		
Description	Compatibility	Pros and Cons
Extend the 4-lane roadway to 20th Street NW.	- At 23rd Street NW	Pros
Northbound right lane would terminate as right	- No Build	1. Currently an illustrative project identified in the 2045 MTP involves shifting 4 -lane to 2 -lane transition north
turn only lane 20th Street NW. Maintain the	- Alternative A: Install Traffic Signal	2. Improves pedestrian comfort, reduces intersection pedestrian crossing distances, and provides opportunity to improve the pedestrian crosswalk at 20th
existing 2 -lane roadway segment between 20th	- Alternative B: Install Single-Lane Roundabout	Street NW
Street NW and 23rd Street NW.	- At 20th Street NW	3. Compatibility with a variety of intersection alternatives
	- No Build	4. Low reconstruction cost. Minimal curb work and widening is needed in the northbound direction between 17th Street NW and 20th Street NW
	\bigcirc Alternative A: Convert to 3/4 Access	5. Addresses the northbound motorist lane utilization and driving within the existing shoulder issue
	- ${ }^{\circ}$ Alternative B: Convert to 3/4 Access and also Prohibit Southbound Left Turns	
	- At 17th Street NW ○Alternative A: Install Traffic Signal	Cons 1. Requires roadway widening on one block
	- Alternative A: Install Traffic Signal	2. Mainais wide cond

5.6 Identification of Other Improvement Alternatives

In addition to the intersection and segment alternatives, several additional improvements have been identified, as previously illustrated on Figure 5-1. These include:

- Establishing sidewalk connections. Six potential sidewalk connections were identified to address system gaps and to make connection between Mn 220 and adjoining businesses and neighborhoods.
- Relocation of above ground utility boxes. One location on the southwest corner of DeMers Avenue $/ 10^{\text {th }}$ Street NE was identified as being problematic in obstructing stopped motorist sight lines of approaching traffic.
- $\mathbf{1 0}^{\text {th }}$ Street NE to $9^{\text {th }}$ Street NE lane transition. One potential option to improve the lane drop and southbound left turn lane alignment at $9^{\text {th }}$ Street NE, as illustrated in Figure 5-5 below.

Figure 5- 5. Lane Drop and Left Turn Lane Striping Improvement - 10 ${ }^{\text {th }}$ Street NE to $9^{\text {th }}$ Street NE

5.7 Evaluation of Intersection Alternatives

Nine qualitative and quantitative evaluation metric categories were reviewed as part of the screening process, as summarized in Table 5-22. The key evaluation metrics used to compare each alternative are consistent with the 2045 MTP objectives and performance targets.

Table 5- 22. Mn 220 Corridor Evaluation Metrics

Purpose and Need

- Compatible with project purpose and needs

Intersection Capacity

- Intersection level of service
- Worst approach level of service
- Delay Benefit

Transportation Demand/System Linkage

- Side-street accessibility
- Connectivity within the study area
- Connectivity to the greater region
- Dependence on 5th Ave NW or 2nd St NE connections
- Ability to accommodate future corridor volumes

Social or Economic Demand

- Compatibility with future land development
- Existing business impact
- Ability to accommodate harvest season heavy commercial traffic volumes and movements
- Ability to accommodate year-round heavy commercial traffic movements
- Farmland impact
- Corridor visual quality impact
- Environmental impacts

Modal Interrelationships

- Pedestrian network compatibility
- Ease of pedestrian crossing
- Bicycle network compatibility
- Transit service impacts

Safety

- Crash rate
- Injury Crash Percentage
- Crash Reduction or Impact

Roadway Deficiencies

- Infrastructure lifetime
- Public street and driveway spacing

Roadway Design and Complexity

- Addresses known roadway deficiencies
- Easiness to navigate / driver familiarity
- Coordination with planned project
- Favorable construction timeline
- Right-of-way impact area
- Number of potential property acquisitions

Cost

- Estimated design \& construction cost
- Cost/benefit ratio

The evaluation criteria are intended to provide for a quantitative and qualitative evaluation of each of the alternatives, supplementing the selection and refinement of intersection recommendations. For each evaluation criteria, the alternative is subjectively scored based on how well it meets the objective; ranging from, 1 - does not meet objective (impact), to 3-neutral (no change), to 5 - meets the objective well (improvement).
The evaluation criteria categories were evaluated in two ways: 1) given equal weight to each of the nine evaluation categories, and 2) weighted categories based on priorities heard through the stakeholder engagement process and consistency with other MPO studies completed in the area. The prioritized categories are (weight denoted in parenthesis):

- Purpose and Need (1)
- Safety (1.5)
- Intersection Capacity (1.25)
- Cost / Economical (1.25)
- Social or Economic Demand (1.1)
- Roadway Design and Complexity (1.1)
- Modal Interrelationships (1.1)
- Transportation Demand/System Linkage (1.05)
- Roadway Deficiencies (Access Spacing) (1)

Table 5-23 and Table 5-24 detail the evaluation of the intersection alternatives developed with equal category weight. Table 5-25 and Table 5-26 detail the evaluation of the intersection alternatives developed with prioritized categories.

Table 5- 23. Preliminary Alternatives Evaluation Matrix - Mn 220 at US 2

MN-220 Preliminary Alternatives Evaluation Matrix	Mn 220 at US 2																	
	No Build		$\underset{\substack{\text { Signal Improvements } \\ \text { (Intersection-level } \\ \text { analysis) }}}{\text { Alterativer }}$		Alternative $\mathrm{A}-0$Alternative $\mathrm{A}+$Offset EB/WB LT Lanes		Alternative A-1 Alternative A + Dual EB LT Lanes		Alternative A-2 Alternative A + RT Channelization Improvements		Alternative A-3 Alternative A + Offset EB/WB LT Lanes $+$ RT Channelization		$\begin{gathered} \text { Alternative B } \\ \text { 2-lane Roundabout } \end{gathered}$		$\frac{\text { Alternative C }}{\text { Displaced EB LT }}$		Alternative DGrade Separation(Tight Diamond)	
	Analysis	Score																
Purpose and Need		1.0		4.0		4.0		4.0		4.0		4.0		4.0		4.0		4.0
1 Compatible with project purpose and needs	--	1	--	4	--	4	--	4	--	4	--	4	--	4	--	4	--	4
Intersection Capacity		2.3		2.0		2.0		3.0		2.0		2.0		4.7		3.3		4.7
1 \|ntersection level of service (2045 AM/PM)	D/D		D/D	2	D/D	2	c/c	3	D/D	2	D/D	2	A/A	5	c/c	3	NA	5
Worst approach level of service (2045 AM/PM)	D/E	2	D/E	2	D/E	2	D/D	2	D/D	2	D/D	2	B/C	4	c/c	3	NA	4
Delay Benefit (Million $\$$; 20 Years Present Value)	\$	3	\$ (1.92)	2	(1.92)	2	\$ 5.10	4	\$ (2.04)	2	\$ (2.04)	2	\$ 38.51	5	\$ 9.01	4	Large	5
Transportation Demand/System Linkage		2.4		2.6		2.6		3.2		2.6		2.6		3.6		3.2		3.6
Side-street accessibility	ок	3																
Connectivity within the study area	ок		ок)	ок	3	ок	3	OK	3	OK	3	ок	3	ок	3	ок	3
Connectivity to the greater region	ок	3	ок	3	ок	3	OK	3	ок	3	OK	3	ок	3	ок	3	ок	3
Dependence on 5th Ave NW or 2nd St NE connections	NA	1	NA	1	NA	1	C/D		NA	1	D/E	1	B/C	4	A-1	3	NA	4
5 Ability to accommodate future corridor volumes	--	2	--	3	--	3	--	4	--	3	--	3	\cdots	5	--	4	--	5
Social or Economic Demand		3.0		3.0		3.0		2.9		3.1		2.9		3.4		2.7		2.1
1 Compatibility with future land development	--	3	--	3	--	3	--	3	--	1	--	3	--	3	--	3	--	3
Existing business impact	--	3	--	3	-	3	-	3	-	3	-	3	-	3	--	2	--	1
Ability to accommodate harvest season heavy commercial trafic volumes and movements	-	3	-	3	-	3	-	3	--	3	--	3	-)	--	3	--	3
Ability to accommodate year-round heavy commercial trafic movements	--	3	--	3	--	3	--	3	--	3	--	3	--	3	--	3	--	3
Farmland impact	--	3	--	3	--	3	--	3	--	3	--	3	--	3	--	3	--	3
Corridor visual quality impact	\cdots	3	\cdots	3	\cdots	3	\cdots	3	--		--	3	\cdots	5	--	3	-	1
7 Environmental impacts	--	3	--	3	--	3	--	2	--	4	--	2	--	4	--	2	--	1
Modal Interrelationships		2.8		3.3		3.3		3.3		3.3		3.3		2.5		2.8		1.8
1 Pedestrian network compatibility	-	3	-	3	--	3	--	3	--	3	--	3	\cdots	3	\cdots	3	\cdots	1
Ease of pedestrian crossing	--	2	--	4	--	4	--	4	--	4	--	4	--	2	--	2	--	2
Bicycle network compatibility	--	3	--	3	--	3	--	3	--	3	--	3	-	2	--	3	-	1
4 Transit service impacts	--	3	\cdots	3	--	3	--	3	--	3	--	3	--	3	--	3	--	3
Safety		3.0		3.7		4.0		3.7		3.7		4.0		3.7		3.7		3.7
Crash rate (crashes / million entering vehicles)	1.27	3	0.95	4	0.88	5	0.93	4	0.94	4	0.87	5	2.18	1	0.95	4	NA	4
2 Injury Crash Percentage	29\%	3	30\%	3	30\%	3	30\%	3	31\%	3	30\%	3	14\%	5	30\%	3	NA	3
3 Crash benefit (Million \$; 20 Years Present Value)	\$	3	\$ 2.11	4	\$ 2.72	4	\$ 2.36	4	\$ 2.09	4	\$ 2.75	4	\$ 4.26	5	\$ 2.11	4	NA	4
Roadway Deficiencies		2.0		3.0		3.0		3.0		3.0		3.0		4.0		2.5		3.0
1 \|nfrastructure lifetime	--	1	-	3	-	3	-	3	-	3	-	3	-	5	-	3	--	4
2 Public street and driveway spacing	--	3	--	3	--	3	--	3	--	3	--	3	-	3	--	2	--	2
Roadway Design and Complexity		3.8		4.3		4.2		4.2		4.3		4.2		3.7		2.2		2.5
Addresses known roadway deficiencies	None	1	Signal	4	nal/Paveme	5	Signal	,	nal/Paveme	5								
Easiness to navigate / driver familiarity	Comfort	5	Familiar	4	Unfamiliar	2	ery Unfamili	1	Comfort	5								
3 Coordination with planned project	--	2	--	5	--	4	--	4	--	5	--	4	--	3	--	2	\cdots	2
Favorable construction timeline	--	5	\cdots	3	\cdots	3	\cdots	3	--	3	--	3	-	2	--	2	--	1
Right-of-way impact area	0	5	0	5	0	5	0	5	0	5	0	5	0	5	Some	2	Large	1
Number of potential property acquisitions	0	5	0	5	,	5	,	5	0	5	0	5	0	5	Some	2	Large	1
Cost		4.0		3.0		2.0		3.0		3.0		2.0		3.5		3.0		1.0
Estimated construction cost (Million \$)	\$	5	\$ 0.35	4	\$ 2.35	2	\$ 2.35	2	\$ 0.88	4	\$ 2.65	2	\$ 3.60	2	\$ 2.90	2	> $\$ 15 \mathrm{~m}$	1
	NA	3	${ }^{0.66} 106.0$		${ }^{0.48} 104.0$		110.0		0.07	2	0.38	2	17.34	5	5.41	4	NA	1
	96.0				107.0	103.0		118.0		95.0		92.0						

Technical Memorandum \#4

Table 5- 24. Preliminary Alternatives Evaluation Matrix - All Other Intersections

Table 5- 25. Prioritized Preliminary Alternatives Evaluation Matrix - Mn 220 at US 2

MN-220 Preliminary Alternatives Evaluation Matrix		Mn 220 at US 2																	
		No Build		Alternative \mathbf{A}Signal Improvements(Intersection-levelanalysis)		Alternative A-0 Alternative A + Offset EB/WB LT Lanes		Alternative A-1 Alternative A + Dual EB LT Lanes		Alternative A-2Alternative A+RT ChannelizationImprovements		$\frac{\text { Alternative } \mathrm{A}-3}{\text { Alternative } \mathrm{A}+}$ Offset EB/WB LT Lanes + + RT Channelization		Alternative B2-lane Roundabout		$\begin{aligned} & \hline \text { Alternative C } \\ & \text { Displaced EB LT } \end{aligned}$		Alternative DGrade Separation(Tight Diamond)	
		Analysis	Score																
Purpose and Need			1.0		4.0		4.0		4.0		4.0		4.0		4.0		4.0		4.0
Intersection Capacity		-	1	--	4	--	4	--	4	--	4	--	4	--	4	--	4	-	4
			2.3		2.0		2.0		3.0		2.0		2.0		4.7		3.3		4.7
1	Intersection level of service (2045 AM/PM)	D/D	2	D/D	2	D/D	2	c/c	3	D/D	2	D/D	2	A/A	5	c/c	3	NA	5
2	Worst approach level of service (2045 AM/PM)	D/E	2	D/E	2	D/E	2	D/D	2	D/D	2	D/D	2	B/C	4	c/c	3	NA	4
3	Delay Benefit (Million $\$$; 20 Years Present Value)	\$	3	\$ (1.92)	2	\$ (1.92)	2	\$ 5.10	4	\$ (2.04)	2	\$ (2.04)	2	\$ 38.51	5	\$ 9.01	4	Large	5
Transportation Demand/System Linkage			2.4		2.6		2.6		3.2		2.6		2.6		3.6		3.2		3.6
1	Side-street accessibility	ок	3																
2	Connectivity within the study area	ок	3																
	Connectivity to the greater region	ок	3																
4	Dependence on 5th Ave NW or 2nd St NE connections	NA	1	NA	1	NA	1	C/D		NA	1	D/E	1	B/C	4	A-1	3	NA	4
5	Ability to accommodate future corridor volumes	\cdots	2	--	3	--	3	--	4	-	3	-	3	-	5	--	4	--	5
Social or Economic Demand			3.0		3.0		3.0		2.9		3.1		2.9		3.4		2.7		2.1
1	Compatibility with future land development	--	3	--	3	--	3	--	3	--	3	--	3	--	3	--	3	--	3
2	Existing business impact	--	3	--	3	--	3	-	3	-	3	-	3	-	3	-	2	-	1
3	Ability to accommodate harvest season heavy commercial traffic volumes and movements	--	3	--	3	--	3	--	3	--	3	-	3	-	3	-	3	-	3
4	Ability to accommodate year-round heavy commercial traffic movements	--	3	--	3	--	3	--	3	--	3	-	3	--	3	--	3	--	3
5	Farmland impact	\cdots	3	--		\cdots		\cdots		\cdots	3	\cdots	3	-	3	\cdots	3	\cdots	3
6	Corridor visual quality impact	--	3	--	3	--	3	--	3	--	3	-	3	-	5	--	3	--	1
7	Environmental impacts	--	3	--	3	--	3	--	2	-	4	--	2	--	4	--	2	-	1
Modal Interrelationships			2.8		3.3		3.3		3.3		3.3		3.3		2.5		2.8		1.8
1	Pedestrian network compatibility	--	3	--	3	--	3	--	3	-	3	-	3	-	3	-	3	-	1
2	Ease of pedestrian crossing	--	2	--	4	--	4	--	4	--	4	-	4	--	2	-	2	--	2
3	Bicycle network compatibility	-	3	\cdots	3	--	3	\cdots	3	-	3	-	3	-	2	--	3	\cdots	1
4	Transit service impacts	--	3	--	3	--	3	--	3	--	3	-	3	--	3	-	3	\cdots	3
Safety			3.0		3.7		4.0		3.7		3.7		4.0		3.7		3.7		3.7
1	Crash rate (crashes / million entering vehicles)	1.27	3	0.95	4	0.88	5	0.93	4	0.94	4	0.87	5	2.18	1	0.95	4	NA	4
2	Injury Crash Percentage	29\%	3	30\%	3	30\%	3	30\%	3	31\%	3	30\%	3	14\%	5	30\%	3	NA	3
3	Crash benefit (Million $\$; 20$ Years Present Value)	\$	3	\$ 2.11	4	\$ 2.72	4	\$ 2.36	4	\$ 2.09	4	\$ 2.75	4	\$ 4.26	5	\$ 2.11	4	NA	4
Roadway Deficiencies			2.0		3.0		3.0		3.0		3.0		3.0		4.0		2.5		3.0
		--	1	--	3	--	3	--	3	--	3	-	3	--	5	-	5	-	4
2	Public street and driveway spacing	--	3	--	3	--	3	--	3	--	3	--		--	3	--	2	--	2
Roadway Design and Complexity			3.8		4.3		4.2		4.2		4.3		4.2		3.7		2.2		2.5
1	Addresses known roadway deficiencies	None	1	Signal	4	nal/Paveme	5	Signal	4	nal/Paveme	5								
2	Easiness to navigate / driver familiarity	Comfort	5	Familiar	4	Unfamiliar	2	ery Unfamilif	1	Comfort	5								
3	Coordination with planned project	--	2	-	5	-	4	-	4		5	--	4	--	3	--	2	-	2
4	Favorable construction timeline	--	5	--	3	--	3	\cdots	3	--	3	--	3	--	2	-	2	-	1
5	Right-of-way impact area	0	5	0	5	0	5	0	5	0	5	0	5	0	5	Some	2	Large	1
6	Number of potential property acquisitions	0	5	0	5	0	5	0	5	0	5	0	5	0	5	Some	2	Large	1
Cost			4.0		3.0		2.0		3.0		3.0		2.0		3.5		3.0		1.0
1	Estimated construction cost (Million \$)	\$	5	\$ 0.35	4	\$ 2.35	2	\$ 2.35	2	\$ 0.88	4	\$ 2.65	2	\$ 3.60	2	\$ 2.90	2	>\$15m	1
2	Benefit/cost ratio	NA	3	${ }_{0}^{0.66 \quad 121.2}$		${ }_{0}^{0.48}$		${ }^{4.47} 125.9$		${ }^{0.07} 122.3$			2		5		4		1
	TOTAL (Weighted Sum	110.4				118.0	1355		109.6		106.1								

Table 5- 26. Prioritized Preliminary Alternatives Evaluation Matrix - All Other Intersections

	220 at 10 h		Mr20atatath			Mr200atish			Mn200at17\%			Mn 220 a 20 com			Mr 220 a 23 3d		
	Nobuild	${ }^{\text {Alterative }}$	Nobuld	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Signalt Improtive } \mathbf{A} \\ \text { (Intersection-levels } \\ \text { analysis) } \end{array} \\ \hline \end{array}$	${ }_{\text {a }}^{\text {Altemative }}$	Nowild	${ }^{\text {Alterative }}$ /		Nobulid			Nobuild	${ }_{\text {Alterative }}^{3 / 4 \text { aceess }}$		Nobuild	$\begin{gathered} \hline \text { Alternative A } \\ \text { Signal Installation } \\ \text { (Intersection-level } \\ \text { analysis) } \end{gathered}$	
	Analus $\frac{\text { Screre }}{20}$	Analisis $\frac{5}{4.0}$	Analys ${ }^{\text {Screce }}$		Analis ${ }_{\text {Scorer }}$		${ }_{\text {Analysis }}$	Analysis	(tandis	Analysis $\operatorname{cosere}_{4}^{40}$	Analis ${ }_{\text {Scorer }}$	(Analis $\frac{\text { Score }}{10}$	Analisis			Analis ${ }_{\text {Starer }}$	
		${ }^{43}$	$\begin{array}{r}\text { - } \\ -\quad 20 \\ \hline\end{array}$	$\frac{4}{37}$	$\frac{4}{4.7}$	${ }_{4}^{1.3}$	${ }_{4}^{3}$	 $-\quad \frac{3}{43}$	${ }^{30}$	- $\quad \begin{aligned} & 4 \\ & 30\end{aligned}$		${ }_{4}{ }^{0}$	${ }_{4}^{3}$			- $\quad \begin{array}{r}4 \\ 30\end{array}$	
$\frac{1}{1}$	A/A	${ }^{\mathrm{NA}}$	${ }^{\text {N/B }}$	${ }^{\text {A/B }}$	AA	${ }_{\text {A/ }}$	${ }^{\mathrm{Na}}$	${ }^{\mathrm{Na}}$	${ }^{\text {A/B }}$	${ }_{\text {AB }}$	N/A	${ }_{\text {AA }}$	${ }^{\mathrm{NA}}$	${ }^{\text {NA }}$	AA	$8 / 8$	
	${ }_{5}{ }^{\text {c10 }}$.	${ }^{\text {Na }}$	${ }_{5}^{8 / 8}$.		${ }^{\text {A AA }} 8.81{ }^{\text {c }}$	(${ }^{\text {A/A }}$ [$\quad{ }^{5}$	NA. ${ }^{5}$	NA	D/F. ${ }^{\text {¢ }}$	${ }_{5}^{\frac{017}{1278)}}$	${ }_{\text {S AA }}{ }_{1 / 9}$	\% B/C. ${ }^{\text {P/ }}$	NA. ${ }^{\text {N }}$	${ }^{\mathrm{NA}}$.	${ }^{\text {c/c }}$.	${ }_{\text {S }}^{8 / 8.051}$	${ }_{\text {AA }}{ }_{103}$
Stion oemma/SSstem Lnenege		26		${ }^{3.6}$	32	3.4		${ }^{3,4}$	${ }_{3}$				${ }_{3,2}$				
	- ${ }^{-1} \quad{ }^{3}$	(1)	- ${ }^{\circ}$	O\% ${ }^{\circ}{ }^{\text {a }}$	- ${ }^{-1} \quad \frac{2}{3}$	\% ${ }^{5} \quad 3$	ö	- ${ }^{\text {ox }} \quad 3$	-\% ${ }^{-3}$	- ${ }^{-1} \quad{ }^{\text {a }}$	ok	- \quadOk 8	ö	ok	ok	- ${ }^{\text {ox }}$	ö
Comeativy onte eraeer eeion	${ }_{\text {ok }}^{\text {ok }}$		\% ${ }_{\text {ok }}$					$\stackrel{\text { ok }}{\text { N }}$			$\stackrel{\text { ok }}{\text { Na }}$	 ok Na 3		${ }_{\text {ok }}^{\text {Ok }}$	-	${ }_{\text {ok }}^{\text {ok }}$	
	- ${ }^{-1}$	neead	\cdots	NA $\quad \frac{5}{5}$		N4		NA		- ${ }^{-1}$	NA $\quad 5$	${ }_{5}$		NA		Na	$\stackrel{3}{\text { NA }}$
Oil	${ }^{33}$		-3.0	${ }_{30}^{30}$	${ }_{3 .}^{3 .}$	${ }_{30}^{3}$	${ }_{29}^{29}$	${ }^{3.0}$	${ }^{3.0}$	- ${ }^{3.0}$	${ }_{3,4}$	${ }_{30}^{30}$	${ }^{29}$		${ }^{3.0}$		
2 Exisifirb businsisimpatt	-	\cdots	${ }^{3}$	- ${ }^{3}$	${ }^{3}$	${ }^{3}$	- ${ }^{2}$	${ }^{3}$	- ${ }^{3}$	-	$-{ }^{-3}$	${ }^{3}$	- ${ }^{2}$	- 2		-	
	- ${ }^{3}$	\cdots	${ }^{-3}$	-		${ }^{3}$											
Frammond impat																	
	- 3^{3}	- ${ }^{3}$	- ${ }^{3}$	- ${ }^{3}$	- ${ }^{-}$	${ }^{-3}$	- ${ }^{3}$	- ${ }^{3}$	-	- ${ }^{3}$	- ${ }^{5}$	- ${ }^{3}$	- ${ }^{3}$	-	-	- ${ }^{3}$	- ${ }^{-}$
Internemoinentios	-								${ }_{20}$								
edestran nework conombibitr																	
	\cdots	$\cdots{ }^{-1}$		$-\quad 3$ $\quad 3$	 $-\quad 3$	$\stackrel{2}{3}$	\cdots	\cdots	- ${ }^{3}$	\because	-	2	\because	${ }^{3}$	- ${ }^{3}$	\because	- ${ }^{-1}$
Tranis eme				- ${ }^{3}$													
		${ }_{\text {Recueded }} \stackrel{4}{4}$		- 0.50	- $0.76{ }^{\text {a }}$		reated ${ }^{\text {ren }}$	${ }^{\text {redused }}$ - ${ }^{\frac{37}{4}}$	(1) ${ }^{\text {a }}$	- \quad¢	${ }_{0}^{0.32}$		${ }_{\text {reduced }} \frac{3.7}{4}$	${ }_{\text {redued }} \frac{3.7}{4}$			${ }^{0.32}$
			\% $228 . \quad 3$	${ }_{5}^{2008}{ }^{206}$					(1)	${ }^{\frac{158 \%}{0.22}}{ }^{0.3}$	136\%				 336	${ }^{\frac{3388}{380.17}}$	${ }^{25 \%}$
	${ }^{25}$	${ }^{3,5}$	- ${ }^{2.0} 1$	- ${ }^{\frac{3}{3}} \mathbf{3}$	3.5 5 5	30 3	30 $-\quad 3$	30 3 3	${ }_{2}^{25}$	${ }^{\frac{30}{3}}$	- ${ }^{4} 5$	$\stackrel{30}{3}$	${ }_{3}^{3.0}$	3.0 $-\quad 3$	${ }_{2}^{25}$	- $\begin{array}{r}30 \\ \hline\end{array}$	$\stackrel{4.0}{5}$
${ }^{2}$	42	${ }_{4}^{4}$	${ }^{3}$	- ${ }_{4}^{3}$		${ }_{4}^{3}$	${ }_{4}^{3}$			-			-			- ${ }^{3}$	
	(\%						(cin	${ }_{\text {cone }}^{\text {Cone }}$			None Comert	Repaeme	Alereme
	-	\cdots						-	-	${ }^{4}$			- 5	\cdots	Como	Comot	䢒
				$\bigcirc \quad{ }_{0}^{\circ}$												$\bigcirc{ }^{\circ}$	
Number of poesentid fopertry cusustions	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	- ${ }_{5}$	\bigcirc		$0 \quad$	0	
(tas	5			${ }_{5}^{50.30}{ }^{\text {a }}$	5300 500 502	\% ${ }_{5}$	${ }^{0.49}{ }^{14 .} 4$	0.35 wa	0.05	${ }^{0.50}$	${ }^{2180}$		${ }^{0.35}$	0.60 1. 1	${ }^{3} \times 1$	0.50	${ }^{2985}$
					520	${ }^{\text {NA }}$			${ }^{\text {NA }}$	\%	${ }^{1.18}$	${ }^{\text {NA }}$	${ }^{\mathrm{NA}}{ }^{1278}$		${ }^{\text {NA }}$	${ }^{12351}$	

Technical Memorandum \#4
Alternatives Development and Evaluation

Appendix A:
Concept Sketches

ALLIANT
engineering

ALLIANT

ALLIANT

MN 220/17th Street NW
WB 67 Turn Movements Into Valley Truck
ALLIANT

MN 220/17th Street NW
WB 67 Turn Movements Out of Valley Truck
ALLIANT

ALLIANT

MN 220/US HWY 2
Alternative D-Grade Separation
(Tight Diamond)

> (8) Signal
> (6) This-Stop

> * Traftic Sisnal
> (1) Thro-Stop

MN 220/US HWY 2
Alternative D-3-Grade Separation (Westbound Overpass)

[^0]: ${ }^{1}$ Minnesota Manual on Uniform Traffic Control Devices, February 2015

[^1]: ${ }^{2}$ Highway Capacity Manual, 6th Edition, Transportation Research Board

[^2]: ${ }^{3}$ A Study of the Traffic Safety at Single Lane Roundabouts in Minnesota, MnDOT, December 16, 2014.
 ${ }^{4}$ MnDOT Intersection Green Sheet. 2011 (Crash Severity Distribution) \& 2015 (Crash Rates)

